2,237 research outputs found

    Light Transmission Through Arctic Sea Ice - Large-Scale Studies on Seasonality and Spatial Variability

    Get PDF
    Arctic sea ice has declined and become thinner and more seasonal during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. Solar light transmitting into and through sea ice is of critical importance for the state of sea-ice and the timing and amount of primary production. The light field in and under sea ice is highly variable: horizontally, vertically, and over seasons. At the same time, observations of light transmittance through sea ice are still sparse, because the under-ice environment is difficult to access and high quality measurements are challenging. Furthermore, it is necessary to generalize measurements in order to obtain Arctic-wide estimates of light conditions and energy budgets

    Detection and quantification of sea-ice melt

    Get PDF
    The mass and energy balance of sea ice are strongly connected through the transfer of solar radiation from the atmosphere through snow and sea ice into the ocean. Recent studies show that a major uncertainty in quantification of the sea ice mass balance is related to the timing and duration of the melt season as well as the very limited knowledge of the characteristics of the snow layer on top. Therefore, we are working on (1) improving our understanding of radiative transfer into and through Arctic and Antarctic sea ice and its impacts on sea-ice melt, and (2) improving existing and developing new remote sensing tools and data products. This allows for estimates of sea-ice melt and freeze rates, and large-scale estimates of heat fluxes in and under sea ice. Here we show established methods for melt onset detection on sea ice based on passive microwave data, and we present first new ideas for future improvements for onset detection methods

    Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica

    Get PDF
    Landfast sea ice (fast ice) attached to Antarctic (near-)coastal elements is a critical component of the local physical and ecological systems. Through its direct coupling with the atmosphere and ocean, fast-ice properties are also a potential indicator of processes related to a changing climate. However, in situ fast-ice observations in Antarctica are extremely sparse because of logistical challenges and harsh environmental conditions. Since 2010, a monitoring program observing the seasonal evolution of fast ice in Atka Bay has been conducted as part of the Antarctic Fast Ice Network (AFIN). The bay is located on the northeastern edge of Ekström Ice Shelf in the eastern Weddell Sea, close to the German wintering station Neumayer III. A number of sampling sites have been regularly revisited each year between annual ice formation and breakup to obtain a continuous record of sea-ice and sub-ice platelet-layer thickness, as well as snow depth and freeboard across the bay. Here, we present the time series of these measurements over the last 9 years. Combining them with observations from the nearby Neumayer III meteorological observatory as well as auxiliary satellite images enables us to relate the seasonal and interannual fast-ice cycle to the factors that influence their evolution. On average, the annual consolidated fast-ice thickness at the end of the growth season is about 2 m, with a loose platelet layer of 4 m thickness beneath and 0.70 m thick snow on top. Results highlight the predominately seasonal character of the fast-ice regime in Atka Bay without a significant interannual trend in any of the observed variables over the 9-year observation period. Also, no changes are evident when comparing with sporadic measurements in the 1980s and 1990s. It is shown that strong easterly winds in the area govern the year-round snow distribution and also trigger the breakup of fast ice in the bay during summer months. Due to the substantial snow accumulation on the fast ice, a characteristic feature is frequent negative freeboard, associated flooding of the snow–ice interface, and a likely subsequent snow ice formation. The buoyant platelet layer beneath negates the snow weight to some extent, but snow thermodynamics is identified as the main driver of the energy and mass budgets for the fast-ice cover in Atka Bay. The new knowledge of the seasonal and interannual variability of fast-ice properties from the present study helps to improve our understanding of interactions between atmosphere, fast ice, ocean, and ice shelves in one of the key regions of Antarctica and calls for intensified multidisciplinary studies in this region

    Definition of patient complexity in adults: A narrative review.

    Get PDF
    Background: Better identification of complex patients could help to improve their care. However, the definition of patient complexity itself is far from obvious. We conducted a narrative review to identify, describe, and synthesize the definitions of patient complexity used in the last 25 years. Methods: We searched PubMed for articles published in English between January 1995 and September 2020, defining patient complexity. We extended the search to the references of the included articles. We assessed the domains presented in the definitions, and classified the definitions as based on (1) medical aspects (e.g., number of conditions) or (2) medical and/or non-medical aspects (e.g., socio-economic status). We assessed whether the definition was based on a tool (e.g., index) or conceptual model. Results: Among 83 articles, there was marked heterogeneity in the patient complexity definitions. Domains contributing to complexity included health, demographics, behavior, socio-economic factors, healthcare system, medical decisionmaking, and environment. Patient complexity was defined according to medical aspects in 30 (36.1%) articles, and to medical and/or non-medical aspects in 53 (63.9%) articles. A tool was used in 36 (43.4%) articles, and a conceptual model in seven (8.4%) articles. Conclusion: A consensus concerning the definition of patient complexity was lacking. Most definitions incorporated nonmedical factors in the definition, underlining the importance of accounting not only for medical but also for non-medical aspects, as well as for their interrelationship

    Distinct metabolite classes in root exudates are indicative for field- or hydroponically-grown cover crops

    Get PDF
    Introduction: Plants release a large variety of metabolites via their roots to shape physico-chemical soil properties and biological processes in the rhizosphere. While hydroponic growth conditions facilitate accessibility of the root system and recovery of root exudates, the natural soil environment can alter root metabolism and exudate secretion, raising the question to what extent the quantity and composition of root exudates released in hydroponic growth systems reflect those recovered from soil-grown roots. Methods: Using a root washing method, we sampled root exudates from four field-grown cover crop species with wide taxonomic distance, namely white mustard, lacy phacelia, bristle oat, and Egyptian clover. A set of primary metabolites and secondary metabolites were analysed in a targeted and untargeted LC-MS-based approach, respectively, for comparison with exudates obtained from hydroponically cultured plants. Results and discussion: We found that hydroponically cultivated plants released a larger amount of total carbon, but that the recovery of total carbon was not indicative for the diversity of metabolites in root exudates. In the field, root exudates from phacelia and clover contained 2.4 to 3.8 times more secondary metabolites, whereas carbon exudation in hydroponics was 5- to 4-fold higher. The composition of the set of metabolites identified using the untargeted approach was much more distinct among all species and growth conditions than that of quantified primary metabolites. Among secondary metabolite classes, the presence of lipids and lipid-like molecules was highly indicative for field samples, while the release of a large amount of phenylpropanoids, organoheterocyclic compounds or benzenoids was characteristic for clover, mustard or oat, respectively, irrespective of the cultivation condition. However, at the compound level the bulk of released metabolites was specific for cultivation conditions in every species, which implies that hydroponically sampled root exudates poorly reflect the metabolic complexity of root exudates recovered from field-grown plants

    The MOSAiC ROV Program: One Year of Comprehensive Under-Ice Observations

    Get PDF
    The overarching goal of the remotely operated vehicle (ROV) operations during MOSAiC was to provide access to the underside of sea ice for a variety of interdisciplinary science objectives throughout an entire year. The M500 ROV was equipped with a large variety of sensors and operated at several sites within the MOSAiC central observatory. Despite logistical and technological challenges, over the full year we accomplished a total of ~60 days of operations with over 300 hours of scientific dive time. 3D ice bottom geometry was mapped in high resolution using an acoustic multibeam sonar covering a 300 m circle around the access hole complementing other ice mass balance measurements on transects, by autonomous systems, airborne laser scanning and from classical ablation stakes. Various camera systems enabled us to document features of sea ice growth and decay. From early March onwards, with the sun rising again, a main focus was the investigation of the spatial variability in ice optical properties. Light transmittance was measured with several hyperspectral radiometers under marked survey areas, including various ice types such as first-year ice, second-year ice, pressure ridges, and leads. Optical surveys were coordinated with surface albedo measurements, vertical snow profiles and aerial photography. The ROV also supported ecosystem research by deploying sediment traps underneath pressure ridges, sampling algal communities at the ice bottom and in ridge cavities with a suction sampler as well as the regular towed under-ice zooplankton and phytoplankton nets. Ice algal coverage was further investigated using an underwater hyperspectral imaging system, while the ROV video cameras enabled the observation of fish and seals living in ridge cavities. The ROV also carried further oceanographic sensors providing vertical and horizontal transect measurements of small-scale bio-physical water column properties such as chlorophyll content, nutrients, optical properties, temperature, salinity and dissolved oxygen. Here we present first highlights from the year-long operations: the discovery of platelet ice under Arctic winter sea ice during polar night and the extensive time series of multibeam derived ice draft maps, which allow together with airborne laser scanner data a full 3D documentation of ice geometry

    Seasonal evolution of light transmission through Central Arctic sea ice

    Get PDF
    Light transmission through sea ice has been identified as a critical process for energy partitioning at the polar atmosphere-ice-ocean boundary. Transmission of sunlight influences direct sea ice melting by absorption, heat deposition in the upper ocean, and in particular primary productivity. While earlier observations relied on a limited number of point observations, the recent years have seen an increase in spatially distributed light measurements underneath sea ice using remotely operated vehicles. These measurements allow us to reconstruct the seasonal evolution of the spatial variability in light transmission. Here we present measurements of sea ice light transmittance from 6 years of polar ROV operations. The dataset covers the entire melt cycle of Central Arctic sea ice. This data from multiple years is combined into a pseudo timeseries describing the seasonal evolution of the changing spatial variability of sea ice optical properties. Snow melt in spring increases light transmission continuously, until a secondary mode originating from translucent melt-ponds appears in the histograms of light transmittance. This secondary mode persists long into autumn, before snow fall reduces overall light levels again. Comparison to several autonomous time series measurements from single locations confirms the detected general patterns of the seasonal evolution of light transmittance variability. These results will allow further insights on the validity of radiation transfer parameterization used in ice-ocean models

    Seasonal evolution of light transmission through Arctic summer sea ice

    Get PDF
    Light transmission through sea ice has been identified as a critical process for energy partitioning at the polar atmosphere–ice–ocean boundary. Transmission of sunlight influences direct sea-ice melting by absorption, heat deposition in the upper ocean, and in particular primary productivity. While earlier observations relied on a limited number of point observations, the recent years have seen an increase in spatially distributed light measurements underneath sea ice using remotely operated vehicles (ROV). These measurements allow us to reconstruct the seasonal evolution of the spatial variability in light transmission. Here we present measurements of sea-ice light transmittance from 6 years of polar ROV operations. The dataset covers the entire melt cycle of central Arctic sea ice. Data is combined into a pseudo timeseries describing the seasonal evolution of the changing spatial variability of sea-ice optical properties. Snow melt in spring increases light transmission continuously, until a secondary mode originating from translucent melt-ponds appears in the histograms of light transmittance. This secondary mode persists long into autumn, before snow fall reduces overall light levels again. Comparison to several autonomous time series measurements from single locations confirms the detected general patterns of the seasonal evolution of light transmittance variability. These results allow for the evaluation of two different light transmittance parameterizations, implying that light transmission is overestimated in current ice–ocean models
    • …
    corecore